
Co-processing SPMD Computation on GPUs and CPUs on Shared Memory System

School of Informatics and Computing, Pervasive Technology Institute

Indiana University Bloomington

Hui Li, Geoffrey Fox, Gregor Laszewski, Zhenhua Guo, Judy Qiu

Abstract— Heterogeneous parallel system with multi

processors and accelerators are becoming ubiquitous due to

better cost-performance and energy-efficiency. These

heterogeneous processor architectures have different

instruction sets and are optimized for either task-latency or

throughput purposes. Challenges occur in regard to

programmability and performance when executing SPMD

computations on heterogeneous architectures simultaneously.

In order to meet these challenges, we implemented a

MapReduce runtime system to co-process SPMD job on GPUs

and CPUs on shared memory system. We are proposing a

heterogeneous MapReduce programming interface for the

developer and leverage the two-level scheduling approach in

order to efficiently schedule tasks with heterogeneous

granularities on the GPUs and CPUs. Experimental results of

C-means clustering, matrix multiplication and word count

indicate that using all CPU cores increase the GPU

performance by 11.5%, 5.1%, and 41.9% respectively.

Keyword: MapReduce, SPMD, GPU, CUDA, Multi-Level-

Scheduler

I. INTRODUCTION

Heterogeneous parallel systems with multi-core, many-
core processors and accelerators are becoming ubiquitous
due to better cost-performance and energy-efficiency [1]. In
low-end HPC systems, a small sized hybrid cluster with only
tens of GPU cards can provide performance over one
petaflops, while the same scale CPU cluster can provide one
teraflops of peak performance. In high-end HPC system,
Tianhe-1A, a hybrid cluster using Intel CPUs and NVIDA
GPUs became the fastest supercomputer in 2010.

Two fundamental measures for processor performance
are task latency and throughput [1]. The traditional CPU is
optimized for a lower latency of operations in clock cycles.
Now this pattern has stalled, as such CPUs are integrating
more cores within the processor. These multi-core and many-
core CPUs can exploit modest parallel workloads for
multiple tasks. These parallel tasks can have different
instructions and work on different types of data sets, or
MIMD. The current generation of graphical processing units
(GPUs) contains massively simple processing cores that are
optimized for computation that contain single-instruction,
multiple threads, or SIMT. GPUs sacrifice single thread
execution speed in order to achieve aggregated high
throughput across all of the threads.

The NVIDIA‟s CUDA [2] and Khronos Group OpenCL
[3] are the current and most widely used GPU programming

tools. Both CUDA and OpenCL claim to translate source
code into binaries run on CPUs and GPUs. However, these
generated binary codes cannot run on CPUs and GPUs
simultaneously. The CPU cores are idle while doing GPU
computation, or vice versa. Figure 1 shows programmability
challenges of how to map the SPMD computation to the
CPUs and GPUs simultaneously. NVIDIA use the
terminology SIMT, “Single Instruction, Multiple Threads”,
to present the programming model on GPU. The SIMT can
be considered a hybrid between vector processing and
hardware threads. To write SIMT codes, CUDA developers
need calculate the thread indices and carefully arrange
memory access pattern. Our work bridges this gap between
SIMT and SPMD by providing a high-level MapReduce
programming interface to developers and hides the
implementation details from developers. The SPMD style
computations are already presented on CPUs by using many
programming tools such as Pthreads, and OpenMP. To co-
process SPMD computation on GPUs and CPUs, we need
find the intersection of GPU and CPU SPMD applications
first. The applications should have enough computation so as
to keep GPUs busy. In addition, their input data size should
be fit in both GPU and CPU memory. Most important, these
SPMD applications should be those whose major
computation can be partitioned into parallel sub-tasks with
arbitrary granularities because the proper task processing
granularities on GPU and CPU are different. Some
applications in linear algebra, data mining can meet above
requirements, such as DGEMM, FFT, Kmeans, SVM, which
have had the implementations for both CPU and GPU.

Figure 1: Co-processing SPMD on CPUs and GPUs

We also need a programming model that can present the
SPMD computation on both GPUs and CPUs. The
MapReduce [4] programming model originated at Google,
and it has been successfully applied to large classes of

SPMD applications on shared memory, and distributed
memory systems. What‟s more, the recent researches proved
that executing MapReduce computation on GPU is not only
feasible and but also practice. Developing the MapReduce
program is easy because the MapReduce runtime hides the
implementation details such as data movement, task
scheduling and work load balance from the developers.
However, most state-of-the-art MapReduce implementations
are designed to run tasks solely on CPUs or GPUs, rather
than on CPUs and GPUs simultaneously, which is one of the
differences between our researches with other related work.

Performance is another challenge faced when running
programs on GPUs and CPUs simultaneously as they have
different types of instruction sets. In addition, CPUs prefer to
process coarse granularity tasks rather than the massive fine
grained tasks favored by GPU cards. These challenges
require software to coordinate the parallelism properly in
order to achieve good performance. Even if the SPMD jobs
can be split into tasks with arbitrary granularity, workload
balance, task scheduling overheads issues still need to be
elaborately solved. In addition, the process of mapping the
SPMD computation to GPUs and CPUs should be as
automated as possible due to the various types of hardware
configurations of the CPU and GPU devices.

We have implemented a parallel runtime system, with the
code name Panda, to co-process SPMD computation on
modern NVIDIA Fermi GPUs and Intel Xeon CPUs on
shared memory system. We are proposing a heterogeneous
GPU/CPU parallel programming model for mapping SPMD
computation with heterogeneous task granularity on GPU
and CPUs devices. We implemented the two-level-scheduler
[5] to efficiently schedule tasks with heterogeneous
granularity on GPUs and CPUs. We also implemented an
auto tuning component to adaptively assign the proper
computation workload to GPUs and CPUs devices. In order
to evaluate Panda runtime system, we implemented three
applications including C-means clustering, matrix-matrix
multiplication and word count using Panda. We make the
comprehensive performance comparison between Panda with
CUDA, Mars [6], Phoenix [7], OpenACC [8] and MAGMA.

The rest of the paper is organized as follows. We gave a
brief overview of the related work in section 2. We illustrate
the design and implementation of Panda in section 3. In
section 4, we introduce three Panda applications and evaluate
their performance. We make the conclusion in section 5.

II. RELATED WORK

A. High-Level Interface on GPUs

The early MapReduce library for GPUs included the
following research projects: In 2008, Bingsheng published
the seminal research paper on Mars. The Mars MapReduce
framework was developed for a single Nvidia G80 GPU and
they reported up to 16x speedup over the 4-core CPU-based
implementation for six common web mining applications.
However, Mars cannot run on multiple GPUs and it does not
support to run on GPU and CPU simultaneously. This
project was the first to show the GPU potential for
MapReduce.

OpenACC is a state-of-the-art framework that provides
OpenMP style syntax and can translate C or Fortran source
code into a low-level code, such as CUDA, or OpenCL. A
growing number of vendors support OpenACC as developers
can easily reuse their existing codes. However, OpenACC
cannot run tasks on GPUs and CPUs simultaneously. In
addition, if the parallel algorithm of application is complex,
OpenACC may not perform well as expect.

Existing technologies for high-level programming
interfaces for accelerators falling into two categories: 1)
using a library such as Mars, Qilin [9] to compose low-level
GPU and CPU codes. 2) compiling a sub-set of a high-level
programming such as OpenACC [8], Accelerate [10], and
Harlan [17] langue into a low-level code that is run on GPU
and CPU devices. The second technology supports richer
control flow and significantly simplifies the programming
development on different accelerator devices. However, this
approach usually incurs the extra overhead during compiling
time and runtime, and it prevents developers from using low-
level CUDA/OpenCL code to optimize application
performance themselves. Panda follows the idea in the first
category. However, instead of providing the unified API,
Panda are proposing the heterogeneous GPU/CPU parallel
programming API to compose low-level code that run on
GPUs and CPUs.

B. Scheduling on Heterogeneous Devices

There are large numbers of studies about task scheduling
on distributed heterogeneous computing resources. GridWay
presented by the Globus Alliance can split entire job into
several sub-jobs, and assign each sub-job to one distributed
resource manager for the further processing. Falkon [11] use
a multi-level scheduling strategy to schedule massive,
independent tasks on the HPC system. The first level was
used to allocate resources, while the second level dispatched
the tasks to their assigned resources.

Recently, there are also several runtime systems can
schedule and execute SPMD jobs on GPUs and CPUs. The
Qilin system can map SPMD computations onto GPUs and
CPUs, and they reported good results of DGEMM using
adaptive mapping strategy. Their job is similar to us in terms
of scheduling SPMD tasks on GPU and CPU
simultaneously; however their auto tuning scheduler need
maintains a database to build a performance model in order
to schedule proper workload to GPUs and CPUs. This
approach usually works well for applications which have
regular computation and memory access pattern. Our auto
tuning scheduler make the scheduling decision based on the
performance results of a set of small testing jobs. It does not
need build performance model and therefore works for the
larger problem classes and more heterogeneous devices. The
Uintah system [13] implements the CPU and GPU tasks as
C++ methods and it models hybrid GPU and CPU tasks as
DAG. The hybrid CPU-GPU scheduler assigns tasks to
CPUs for processing when all GPU nodes are busy and there
are CPU cores idle. They reported good speedup
performance of radiation modeling applications on GPU
cluster. The Panda framework leveraged two-level
scheduling strategy where the CPU tasks scheduler and GPU

tasks scheduler are embedded within first level scheduler.
The two-level scheduler assigns tasks to both GPUs and
CPUs in order to increase resource utilization and decrease
job run time. MAGMA [14][15] is a collection of linear
algebra libraries for heterogeneous architectures. It models
the linear algebra computation tasks as a DAG. The
scheduler schedules small non-parallelizable linear algebra
computation on the CPU, and schedules larger more
parallelized ones, often Level 3 BLAS, on the GPU. The
Panda scheduler is designed for scheduling flat MapReduce
style computation on GPUs and CPUs.

III. PANDA ARCHITECTURE

Programmability and performance are two challenges

faced when designing and implementing a parallel runtime

system on heterogeneous devices. In this section we will

illustrate our design idea and the implementation details of

the Panda framework.

A. Design

1) Heterogeneous MapReduceBased Scheme
Figure 2 illustrates the heterogeneous MapReduce based

scheme for co-processing SPMD computation on CPUs and
GPUs on shared memory system. The Map and Reduce
functions present two computation steps of SPMD
applications. Some SPMD applications only have the Map
stage. Further, the heterogeneous MapReduce based scheme
support both GPU and CPU interface. The developers need
implement at least one of GPU and CPU versions, or both
GPU and CPU versions for Map and Reduce functions. This
design decision is based on two reasons. First, the proper
granularities of SPMD tasks on GPU and CPU are different
from each other. CPU prefers to process coarser granularity
than GPU does [9][12]. Thus, developers may implement
different MapReduce functions to efficiently process tasks
with heterogeneous granularities. The second reason is based
on a well-known agreement that different applications favor
different type of hardware resources. Therefore, instead of
providing the unique MapReduce programming interface, we
allow developers implement either the GPU or CPU versions
of MapReduce functions based on above two reasons.

By providing high-level MapReduce based programming
interface, Panda hides runtime implementation and
optimization details from developers such as data movement
across levels of memory hierarchy, scheduling tasks over
heterogeneous devices, and management of multiple GPU
contexts. We also provide several optimization strategies in
runtime level include auto tuning, region based memory
management, iterative support, local combining. We expect
to leave developers the flexibility to write optimized
MapReduce code for different devices, while hiding the
implementation details from them as much as possible.

Figure 2: Panda Heterogeneous MapReduce Based Scheme

2) Multi-levele Scheduling
The innovation of our work is to run heterogeneous

MapReduce tasks on GPUs and CPUs simultaneously. Panda
enable above function by providing the two-level scheduling
strategy [11][18]. The first-level scheduler splits the SPMD
job into several sub-jobs, each of which was assigned to one
GPU or multi-core CPUs. The second-level schedulers
include the CPU tasks scheduler and GPU tasks scheduler,
which are embedded within first-level scheduler. They
further split the sub-jobs into many tasks to be run on the
assigned GPU and CPU resources.

The second design challenge is to determine how to
properly map SPMD computations onto GPUs and CPUs
because they favor different task granularities. Several
approaches exist by which to schedule MapReduce tasks on
GPUs and CPUs. For example, one can construct the
homogenous MapReduce tasks with same data block sizes
and then assign a different number of MapReduce tasks to
the CPUs and GPUs. The problem with this approach is that
task granularity could be too fine for the CPUs or too coarse
for GPUs, either case can lead to a workload imbalance issue
during computations. Although one can adjust task
granularity by group/split tasks after the initial task
partitioning, such an action introduce extra programming
efforts from developers and increase the performance
overhead. With our two-level scheduling approach, because
the CPU scheduler and GPU scheduler are independent from
each other, they can split the sub-jobs into tasks with
heterogeneous granularities that are suitable to run on GPU
and CPU respectively. As compared with other approaches,
this approach is simple and can be extended to other devices.

B. Implementation

The runtime framework consists of three components:
programming interfaces, a job scheduler, and the backend
utility as shown in Figure 3. The programming interfaces
consist of the framework provided API and user
implemented API. The job scheduler implemented the two-

level scheduling strategy discussed in Section 3.1.2. The
backend utility is implemented with C/C++ and CUDA
language and it is used to run the MapReduce tasks on GPUs
and CPUs. Currently, it supports the CUDA based GPU
device and multi core CPUs as the backend.

Figure 3: Runtime Framework

From developer perspective, the work flow of a typical

Panda job consists of three main stages: job configuration,
Map, and Reduce. In the job configuration stage, users can
specify the parameters to be used to configure sub-jobs and
tasks. These parameters include the number of CPU and
GPU resources; the type and number of Map and Reduce
tasks that used in the computation. The Panda framework
will split the entire job into several sub-jobs whose number is
equal to total number of GPU and CPU devices. The
workload distribution ratio between these sub-jobs can be
specified by the users or determined by an auto tuning
mechanism provided by the Panda framework. Developers
can further divide sub-jobs into MapReduce tasks with
different granularities that run on different devices. The
granularity of these tasks depends on several factors,
including 1) the number of MapReduce tasks specified by
the users; 2) the computation capability features of the
devices, such as the number of cores, and memory size and
3) the computation features of the applications such as being
computation or memory intensive.

In the Map stage, the GPU and CPU backend utilities get
a set of input keyvalue pairs from Panda two-level-scheduler,
and invoke the map() functions that implemented by
developers to process assigned keyvalue pairs. The map()
functions generate a set of intermediate keyvalue pairs in
GPU and CPU memory separately, which will be copied to
CPU memory after all map tasks are complete. Then Panda
shuffle all these intermediate key/value pairs in CPU
memory so that the pairs with the same key are stored
consecutively. In the Reduce stage, the two-level-scheduler
divides the shuffled intermediate key/value pairs into several
chunks, each of which will be assigned to GPU or CPU
backend utility. Then the backend utility invokes the
reduce() functions to process assigned keyvalue pairs. After
the reduce computation is complete, Panda copies the results
of all of the Reduce tasks in the CPUs and GPUs into the
memory of the CPUs so that these results can be further
processed by the users.

C. API

Similar to the existing MapReduce framework such as
Mars and Phoenix, Panda has two kinds of APIs: user-
implemented APIs, which the users should implement; and
system-provided APIs, which the users can use as library
calls. Table 1 illustrates the three types of MapReduce based
API supported by Panda runtime framework. The three types
of MapReduce based APIs include: gpu_host_mapreduce,
gpu_device_mapreduce, and cpu_mapreduce. For example,
gpu_host_map(..), gpu_device_map() and cpu_map(..) are
the three types of the map function. The gpu_host_map() is a
user defined CUDA host function that invoke CUDA global
function or other CUDA based libraries such as MAGMA.
gpu_device_map() is a user defined CUDA kernel function
that perform CUDA code or invoke other kernel functions.
cpu_map() is the user defined C/C++ function. Users need
implement at least one type of map(), reduce(), and
compare() functions; the combiner() function is optional. For
most applications, the source code for the CPU and GPU
versions of the user-implemented APIs are similar due to two
reasons. The first reason is that CUDA support the C/C++
syntax and grammar; one can compile C/C++ source code
with nvcc. The second reason is that the Panda framework
hides some GPU specific work for the users, such as data
staging between the CPU and GPU memory; threads and
blocks indices calculation.

Table 1: Panda MapReduce Based API:

Function Type Function Illustration

C/C++

Function

void cpu_map(KEY *key, VAL *val, int keySize, ..) CPU Map function using C/C++

void cpu_reduce(KEY *key, VAL *val, int keySize, …) CPU Reduce function using C/C++

void cpu_combiner(KEY *KEY, VAL_Arr *val, int keySize,

int valSize)

CPU Combiner function using C/C++.

Used for partial aggregation.

Int cpu_comare(KEY *key1, VAL *val1, .., KEY *key2,

VAL *val2, int KeySize1, int KeySize2, int valSize1,…)

CPU Compare function using C/C++.

Used for shuffling key/value pairs.

CUDA

Device

Function

__device__ void gpu_device_map(KEY *key, …) GPU Map using CUDA device function.

__device__ void gpu__device_reduce(KEY *key, …) GPU Reduce using CUDA device function.

__device__ void gpu_device_combiner(KEY *key, …) GPU Combiner using CUDA device function.

__device__ Int gpu_device_compare(KEY *key, …) GPU Compare using CUDA device function.

CUDA

Host

Function

__host__ void gpu_host_map(KEY *key, …) GPU Map using CUDA host function.

__host__ void gpu_host_reduce(KEY *key, …) GPU Reduce CUDA host function.

__host__ void gpu_host_combiner(KEY *key, …) GPU Combiner CUDA host function.

__host__ void gpu_host_compare(KEY *key, …) GPU Compare CUDA host function.

Figure 4: User Implemented cpu_reduce and
gpu_device_reduce functions for word count and
gpu_host_map function for matrix multiplication.

Figure 4 show the user implemented cpu_reduce() and

gpu_device_reduce() functions for the word count
application and gpu_host_map() function for the matrix
multiplication application, which invoke MAGMA as
library. As shown in Figure 4, Panda simplified the
development of the SPMD MapReduce program on the GPU
and CPU devices. Nevertheless, Panda leave users the
flexibility of either making advanced optimizations in the
kernel function themselves, or leveraging third party highly
tuned linear algebra library, such as MAGMA.

D. Threading and Memory Models

In Panda runtime, there are four steps to map the SPMD
computation to CPU cores or GPU cores. These steps
include 1) from job into sub-jobs; 2) from sub-job into map
tasks; 3) from map tasks into CUDA and CPU threads; 4)
from CUDA threads and CPU threads into GPU/CPU cores.

Panda runtime leverages the Pthreads to manage the GPU
and CPU devices. It spawns one Pthread to manage each
GPU device and one Pthread to manage all of the CPU cores
in the same machine. For example, if there are two GPUs
and 12 CPU cores on one machine, then Panda will spawn
two threads to manage the two GPUs and one thread to
manage the 12 CPU cores. Panda also uses Pthreads to
manage the CPU cores; and leverages the CUDA kernel
threads to manage the GPU cores. In order to increase the
resource utilization of the CPU/GPU cores, Panda usually
spawn multiple threads for each CPU/GPU core. For each
CPU core, it can spawn between one and four Pthreads. For
each GPU core, Panda can spawn between two and 16
CUDA threads. GPU need enough tasks to keep most cores
busy with computation. In addition, without enough threads
to switch between, the GPU won‟t be able to hide its high
latencies. CPU has much less hardware threading than GPU,
and it depends on other technologies such as cache hierarchy,
speculative prefetching to keep CPU cores busy; too many
small tasks will increase the overhead of context switch,
which is expensive in CPU. Therefore, the resource
utilization of both CPU and GPU cores are increased because
Panda can assign proper number of Pthreads and CUDA
threads to the OS kernel and CUDA runtime. In addition, in
order to accommodate processing large numbers of map
tasks, each CUDA thread or CPU Pthread is usually required
to process multiple map tasks. This requirement is met by
striding the total number of threads within the for loop
iteration. Therefore the workload balance requirement is
likely to be satisfied as well.

Equation 1 illustrates the threading, internal processes,
and external processes running pattern for Panda GPU/CPU
tasks. EP is always equal to 1, as we only discuss single

A.

void cpu_reduce(void *KEY, val_t *VAL…){

int count = 0;

for (int i=0;i<valCount;i++){

count += *(int *)(VAL[i].val);

}//calcualte word occurence

EmitCPUReduceOutput(KEY,&count,keySize,…);

}//cpu version of reduce function

B.

__device__ void gpu_device_reduce(void *KEY){

int count = 0;

for (int i=0;i<valCount;i++){

count += *(int *)(VAL[i].val);

}// calcualte word occurence

EmitGPUDeviceReduceOutput(…);

}//gpu version of reduce function

C.

__host__ void gpu_host_map(…){

dgemm_kernel<<<grid, threads>>>(..);

EmitGPUHostMapOutput(KEY,keySize,…);

}// gpu host function invoke MAGMA code

machine in this paper. For CPU, paper [33] reports that using
more number of internal processes than CPU threads can
deliver good performance. For GPU, GT is equal to 1 when
running the gpu_host_mapreduce function, which means it
uses one C++ function to invoke CUDA or MAGMA code.
This approach is leveraged by Utah work[13]. However,
when invoking the gpu_device_mapreduce function, the
proper number of GT is equal to or several times bigger than
number of GPU cores. This approach is used by Mars. Panda
support both approaches, and we will prove that the former
approach can give better performance for GPU applications.

(CTxIP + GTxG) x EP (Eq.1)

G #GPU Cards
GT #GPU Threads
CT #CPU Threads
IP #Internal Processes
EP #External Processes

CPUs and GPUs have different levels of memory

hierarchy; therefore, copying data between them is not trivial
work and needs elaborate effort in order to achieve a good
performance. Panda can achieve the data movement between
the GPU and CPU memory spaces without the effort of
developers. However, we assume that all of the input data are
already in the CPU memory. In the Map stage, the input data
for the CPU Map tasks are copied from the user memory
space to the runtime memory space in CPU. The input data
of GPU Map tasks are copied from the user memory in the
CPU to the runtime memory space in GPU. After the Map
stage, all of the intermediate key/value pairs will be copied
to the runtime memory space in CPU in order to create
shuffling. The Reduce stage has a similar memory
management process.

E. Optimization

1) Auto Tuning
Workload balance is critical to performance when

running SPMD tasks on heterogeneous resources. Difficulty
occurs when determining the proper workload distribution
among the heterogeneous devices. Panda provides an auto
tuning utility that can be used to find the near optimal
workload distribution for heterogeneous devices. Panda uses
a straightforward, mature auto tuning technology that has
already been adopted by other frameworks such as ATLAS
[19]. Similarly, Panda picks up a set of parameters that affect
job performance and genera a serial of small test jobs by
sweeping the selected parameters. Then, it runs the generated
test jobs and picks up the parameters that have the best
performance. Some approaches attempt to solve the
workload balance issue by making heuristic models to guide
work load distribution based on CPU speed, cache size, and
memory bandwidth. These approaches avoid the overhead of
running many tests jobs, but usually only works well for
certain classes of applications or hardware. Our approach
requires extra overhead, but is more likely to be adaptive to
various types of devices. In addition, it is only worthwhile to
use the auto tuning facility if the application is compute-

intensive. Thus, the overhead of seeking the best runtime
parameters is not problematic when compared with the long
job running time.

2) Region-based Memory Management

Region-based memory management [20] is a type of

memory management in which each allocated object is

assigned to a region, which, typically, is a single contiguous

range of memory space. Two advantages exist to adopting

this technology in the Panda framework. First, although the

latest CUDA runtime supports dynamically allocating the

buffer in the GPU global memory using the malloc

operation, the aggregated overhead of the malloc operation

can kill the performance if many small memory allocation

requests exist. For example, the word count MapReduce job

can generate a large number of intermediate key/value pairs

in the Map stage. Instead of dynamically allocating memory

for each generated key/value, Panda allocates a block of

memory for each CUDA thread, whose size should be big

enough to serve many small memory allocations. When the

block is filled, the runtime will double the size of the block

and copy the data to a new block. The old block will be

deallocated. The second advantage is that the collection of

allocated objects in the region can be deallocated all at once.

For example, Panda can simply deallocate a block of GPU

memory assigned to each CUDA thread after copying the

intermediate key/value pairs to the CPU, in which case,

there would be no need to traverse all of the key/value pairs.

3) Iterative Support

A set of iterative applications, such as Kmeans, exist that

have loop invariant data during the iterations [21][29]. It is

costive for the GPU program to copy these loop invariant

data between the CPU and GPU memories over the

iterations. In order to eliminate the data staging overhead,

Panda enables the program to cache loop invariant data in

the GPU memory over iterations. The performance results in

the next section indicate that the caching loop invariant data

causes an increase in performance. Currently, Panda support

the iterative computation on only one GPU because of the

difficulty to maintain multiple GPU contexts between

iterations. We will support iterative computation on multiple

GPUs in the next release.

4) Local Combiner

If the Reduce function is associative (commutatively is

not necessary), then one can apply the partial aggregation

operation to a subset of the Map output by using a local

combiner function. In Panda, if the above requirement for

the Reduce function is satisfied and local combiner is

supplied, then Panda will perform a partial aggregation to

the intermediate key/value pairs generated by each CUDA

thread and CPU Pthread (each thread usually processes

multiple Map tasks). The gpu_combiner() function are

performed within GPU memory so that the file staging

overhead between CPU and GPU is minimized.

IV. APPLICATIONS AND EVALUATION

This section evaluates the Panda runtime using three

sample applications on different experimental environments.

Table 2 illustrates configuration of GPU and CPU devices

that used in this paper. All the NVIDIA GPU cards listed in

Table 2 support computation capability 2.x. The numbers of

cores on Keeneland [22] and Delta [23] machine are 12 and

24 with hyper thread enabled. The user implemented API

are written in CUDA and C/C++, and compiled by nvcc 4.2

and gcc 4.4.6, respectively.

Table 2: Hardware Description

Machine
Name

Keeneland Delta Basalt

GPU Type M2050 C2070 T430

GPUs/Node 3 2 1

GPU Memory 6 GB 6 GB 1 GB

Cores/GPU 512 448 96

CPU Type Intel Xeon
5660

Intel Xeon
5660

Intel I5-
2400

CPU Speed 2.80 GHz 2.80 GHz 3.10 GHz

Cores/CPU 12 Cores 24 Cores 4 Cores

CPU Memory 24 GB 16 GB 4 GB

Operating
System

Red Hat

Enterprise
Red Hat

Enterprise
Red Hat

Enterprise

CUDA 4.2 4.2 4.2

GCC 4.4.6 4.4.6 4.4.6

A. C-means Clustering using Panda

The computational demands of the multivariate

clustering grow rapidly; therefore clustering for large data

sets is very time consuming on a single CPU. Fuzzy C-

means is an algorithm of clustering that allows one element

to belong to two or more clusters with different

probabilities. The C-means application [24][25] is

frequently used in multivariate clustering, such as

flowcytometry clustering [24]. The algorithm is based on a

minimization of the following objective function:

 (Eq. 1)
M is a real number greater than 1, while N is the number

of elements. Uij is the value of the membership of Xi in
cluster Cj. ||Xi-Cj|| is the norm expressing the similarity
between the measured and the center. The Xi is the ith of the
d-dimensional measured data; Cj is the d-dimension center
of the cluster. The fuzzy partitioning is performed using an
iterative optimization of the objective function as shown
above. Within each iteration, the algorithm updates the
membership Uij and the cluster centers the Cj using the
following functions:

 (Eq. 2)

 (Eq. 3)

Figure 5: C-means MapReduce Algorithm

 The iteration will stop when ,
where 'e' is a termination criterion between 0 and 1, and „k‟
is the iteration steps. Figure 5 shows the alogirhtm of C-
means MapReduce application.

Figure 6: a. Cmeans (left) and Kmeans (right) clustering
results for Lymphocytes data set after project 4D into 3D
using MDS SMACOF. Lymphocytes data set [35] (22014
points, 4 dimensions, 5 clusters)

Table 3: Average Width Over Clusters and Points using
Different Clustering Approaches.

Clustering Approaches Average Width Over
Clusters and Points

C-means MapReduce Algorithm:

Configure:

 1) Copy data from the CPU to GPU memory

Map function:

 2) Calculate the distance matrix

 3) Calculate the membership matrix

 4) Update the centers kernel

Reduce function:

 5) Aggregate the partial cluster centers and compute

final cluster centers.

 6) Compute the difference between the current cluster

centers and previous iteration.

Main program:

 7) The iteration will stop when the difference is smaller

than predefined threshold or it will go to next iteration.

 8) Compute the cluster distance and memberships

using final centers.

Kmeans 2.1479

Cmeans (hard classes) 2.1789

Cmeans (soft classes) 1.175019

Flame (finit mixture model) 2.1754

Determinstic Annealing 2.1478

Figure 7: Performance of Different Task Granularity of

Panda C-means Jobs on GPU and CPU.
 We implemented C-means MapReduce application using
Panda on GPU and CPU. The input matrices listed in Figure
5 were copied into CPU and GPU memory in advance. The
„key‟ object of Panda C-means MapReduce task contains the
indices bound of input matrices, while the „value‟ object
stores the pointers of input matrices in GPU or CPU memory.
The event matrix is cached in GPU memory in order to avoid
data staging overhead over iterations. The Map function
calcuate and distence and membership matrices, and then
multiply the distence matrix with mebership matrix to
calcuate new cluster centers. The Reduce function aggregate
partial cluster centers and calcuate the final cluster centers.
Figure 7 shows peformance of Panda C-means jobs with
different number of mappers using GPU and CPU on Delta
machine. The parameters of C-means job are 1 million
events, 100 dimensions, 10 clusers, 1 iteration. The number
of GPU cores and CPU cores on Delta machine are 448 and
24 (with hyper-thread eanbled). The results indicate that the
optimal number of mappers of C-means job using GPU or
CPU are 2000 and 24 respectively. It is obvious that C-
means GPU implementation prefered finer task grunaulitry
as compared to CPU implmentation.
 We also study the work load balance issue of Panda C-
means job on GPUs and CPUs by mapping different ratio of
workload to GPUs and CPUs. Figure 8 shows the time of
Panda C-means job using GPU only, CPU only, and
GPU+CPU with different workload distribution ratios. The
cross point, point 0.1 in x-axis, of two lines plotted in Figure
9 is the optimal workload distribution among GPU and CPU.
The time of C-means job is largely determined by calculating
distance and membership matrix, which are computation
steps 2)~4) in Figure 5. The computation of update centers
can be considered as the matrix-vector multiplication of

distance matrix and membership matrix. Therefor the C-
means computation can be partitioned into some parallel
sub-tasks that run on CPU and GPU, and the optimal
workload distribution between CPU and GPU is at the point
when the tasks on CPU and GPU get completed at the same
time. The similar conclusions are also reported in papers
study workload distribution issue of the matrix-matrix
multiplication on GPU and CPU [26]

Figure 8: Effect of workload distribution on Panda C-means
on GPU and CPU on Delta machine. For job only using CPU,
the value X on x-axis means X percentage of workload is
mapped to CPU. For job only using GPU, the value X means
(1-X) percentage of work is mapped to GPU. For job using
both GPU+CPU, the value X means X percentage of work
was mapped to CPU, and the remain (1-X) percentage of
work was mapped to GPU.

Figure 9: Performance of C-means jobs using Panda and

OpenACC on 1 GPU with/without cache loop invariant data.

 The C-means algorithm is of iterative computation steps,

however, elements of event matrix are not changed during

iterations. It is costive to copy events matrix from GPU

memory to CPU memory over iterations. One can avoid this

overhead by caching loop invariant data in GPU memory. In

OpenACC, developers can add “#pragma acc cache (list)”

directive at the top of a loop. The elements or sub-arrays in

the list are cached in software-managed data cache. In

Panda, developers can specify the “iterative_support” option

when configuration GPU sub-jobs to indicate the runtime to

copy cache loop invariant data in GPU memory once, and

reuse it over iterations. Figure 9 shows the performance of

C-means jobs using Panda and OpenACC with/without

using caching. The OpenACC and Panda can achieve up to

the speedup of 3.14x and 1.15x when using cache for large

input data.

Figure 10: Relative Speedup of C-means Jobs on Delta

Machine Using Panda-1GPU-DeviceMap, Panda-1GPU-

DeviceMap+24CPU, Panda-1GPU-HostMap, CUDA

1GPU, Mars-1GPU, and OpenACC-1GPU, Using OpenMP

24CPU as the Baseline Performance.

Figure 10 shows the relative speedup performances of

C-means jobs using different runtime environments as

compared to the performance of using OpenMP on 24 CPU

cores. The parameters of C-means jobs are 100 dimensions,

10 clusters, 10 iterations, and number of events range from

1 million to 7 million. The results indicate that Panda-

1GPU-DeviceMap is up to 1.97x and 2.46 x faster than

Mars-1GPU and OpenACC-1GPU implementation for large

input dataset. The CUDA-1GPU is 1.66x, 1.51x and, 1.12x

faster than Panda-1GPU-DeviceMap, Panda-1GPU-

DeviceMap+24CPU, and Panda-1GPU-HostMap

implementations respectively. Actually, the Panda-1GPU-

HostMap implementation invoked the CUDA Cmeans code

directly, and the performance gap between them is mainly

due to the Panda runtime overhead. For multiple GPU

results, the Panda-2GPU-DeviceMap and Panda-1GPU-

DeviceMap+24CPU improve the performance by 1.88x and

1.115x as compared with Panda-1GPU-DeviceMap. CUDA-

2GPU is 1.8x faster than Panda-2GPU-2DeviceMap because

it leveraged benefit of coalescing memory access and no

need to care about scheduling and synchronization overhead

on GPUs and CPUs. However, developing Panda C-means

MapReduce program requires less programming effort. The

number of code lines of CUDA C-means source code file is

more than 850, while the user-implemented code lines of

Panda C-means is 270. Table 3 shows the size of the source

code of all the three applications using CUDA and Panda.

Table 4: number of code lines using CUDA and Panda

Apps Other Panda

Cmeans CUDA 850+ gpu_device_map 230+

gpu_device_reduce 40

gpu_host_map 800+

gpu_host_reduce 60

cpu_map 190+

cpu_reduce 40

Dgemm CUDA 310+

MAGMA 30+

gpu_device_map 110+

gpu_device_reduce 0

gpu_host_map 20+

gpu_host_reduce 0

cpu_map 70+

cpu_reduce 0

Word

count

Mars 110+

Phoenix 80+

gpu_device_map 25

gpu_device_reduce 5

gpu_device_combine 5

cpu_map 25

cpu_reduce 5

cpu_combin 5

B. Matrix Multiplication using Panda

The matrix-matrix multiplication is a fundamental kernel
[27][28] widely applicable in scientific computing and data
mining. The computation can be partitioned into parallel
subtasks with arbitrary granularity, which makes it another
good sample application by which to evaluate Panda
framework on GPUs and CPUs. The matrix-matrix
multiplication is defined as A * B = C (Eq. 4).

 (Eq. 4)

We implemented dense matrix-matrix multiplication

application using Panda on CPU and GPU. The computation

only consists of map stage, no shuffle or reduce stage is

included. Both implementations for CPU and GPU utilize

the blocking algorithm in order to enhance cache and shared

memory utilization. In order to achieve better overall flops

performance on GPU, we optimized gpu_map() function by

coalescing the memory access of reading matrix blocks. If

one block is too big to fit in GPU shared memory, we split

that big block into some sub-blocks and process these sub-

blocks sequentially. The computation of each sub-block is

performed in parallel by CUDA threads within same block.

In order to achieve better flops performance on CPU, the

cpu_map() function is compiled with g++ with O3 enabled.

Figure 11: Speedup Performance of Matrix Multiplicaiton
Jobs with Different Workload Distribution among CPU and
GPU on Keeneland, Delta, and Basalt machines. Value X on
x-axis presents X% of workload of job is assigned to CPU

for the processing, and the remain 1-X% of workload of job
is assigned to GPU.
 Figure 11 shows the speedup performance of 5000x5000
matrix multiplication job with different workload distriubion
among CPU and GPU. The optimal workload distribution
among CPU and GPU are 25%, 15%, and 10% when running
the same job on Basalt, Delta, and Keenleand machines.
Similar to the workload distribution analysis in Figure 8, the
optimal workload distribution among GPU and CPU should
be in proportion to the computation capability of CPU and
GPU as shown in Table 1. As shown in Figure 11, machine
with faster GPU card prefer to assign more workload to GPU.

Figure 12: Speedup Performance of Matrix Multiplication
Jobs using Panda-1GPU-HostMap, Panda-1GPU-
DeviceMap, Panda-1GPU-DeviceMap+24CPU, MAGAMA-
1GPU, MAGMA-1GPU+24CPU, and CUDA-1GPU
implementations on Delta machine.

Figure 12 shows the speedup performance of matrix

multiplication jobs using Panda-1GPU-DeviceMap, Panda-

1GPU-HostMap, Panda-24CPU, Panda-1GPU-

DeviceMap+24CPU, MAGMA-1GPU, MAGMA-

1GPU+24CPU, CUDA-1GPU, Mars-1GPU, and Phoenix-

24CPU. The CUDA-1GPU implementation is around

1.52~1.94x faster than Panda-1GPU-DeviceMap for large

matrices sizes. The Mars and Phoenix crashed when the

matrices sizes larger than 5000 and 3000 respectively. For

3000x3000 matrix multiplication job, Panda-1GPU-

DeviceMap achieves the speedup of 15.86x, and 7.68x over

Phoenix and Mars respectively. Panda-1GPU-HostMap is

only a little slower than CUDA-1GPU for large matrices.

Panda 1GPU-DeviceMap+24CPU improve the performance

by 5.1% over Panda-1GPU on average. The workload

distribution among GPU and CPU is 90/10 as calculated by

auto tuning utility. MAGMA-1GPU+24CPU increase the

performance by 7.2% over MAGMA-1GPU, where the

workload distribution among GPU and CPU is determined

by its auto tuning utility.

C. Word Count using Panda

Word Count computes statistics about word occurrences

in text documents. Its input data is a collection of text,

which can be partitioned into arbitrary granularity tasks.

Therefore, word count is another typical SPMD application

to be used to evaluate performance of Panda framework on

GPUs and CPUs. In this section, we study the task

granularity and workload balance issue of the Panda word

Count on GPUs and CPUs. In addition, we compare the

results with those implemented using Mars and Phoenix.

Figure 13: Performance of Panda Word Count with

Different Chunk Sizes on Keeneland and Delta Machines.

For our test cases, we used randomly generated text of

100 words whose length was between 5 and 10. The size of

the input text files ranged from 10MB to 200MB. In one

Panda Word Count job, the input text file was loaded into

memory and then it was split into several in-memory sub-

files, each of which is assigned to one GPU or multi-core

CPU for processing. And the assigned sub-file will be

further split into some chunks, each of which presents input

record of one Map task. The chunk size is specified by

developers in the job configuration stage. Figure 13 shows

the job time of Panda word count with different chunk sizes

using only the CPU or GPU on the Keeneland and Delta

machines. The results indicate that the optimal chunk size of

Panda word count on GPUs is 16KB. Small chunk sizes can

generate too many small map tasks which can increase

scheduling overhead, while large chunk sizes may not

generate enough map tasks to fully utilize all the GPU cores.

In addition, few larger tasks are more likely to lead to

workload imbalance issue. We also noticed that the

performance of Panda word count using CPUs is not

sensitive to the changes of chuck sizes because CPU has the

sophisticated memory caching mechanism.

Figure 14: Effect of workload distribution on Panda

wordcount jobs using 150MB text file on Keeneland

machine. For Panda job only using CPU, the value X on x-

axis means X percentage of work load is mapped to CPU.

For Panda job only using GPU, the value X means (1-X)

percentage of work mapped to GPU. For Panda job using

both GPU and CPU, the value X means X percentage of

work was mapped to CPU, and the remain (1-X) percentage

of work is mapped to GPU.

We also studied the workload balance issue of the Panda

Word Count on the GPUs and CPUs by mapping the

different ratios of workload to the GPUs and CPUs. Figure

14 shows the job running time of word count job using

Panda-1GPU, Panda-24CPU, and Panda-1GPU+24CPU

with different workload distribution ratios. In Figure 14, the

cross point, 0.5 in the x-axis, of the two lines plotted by

Panda-1GPU and Panda-24CPU jobs is the theory optimal

workload distribution among GPU and CPU. However, the

practical optimal workload distribution ratio is at point 0.65

in x-axis. This means the workload distribution rule worked

for the cases showed in Figure 8 and 10 could not be applied

in the case showed in Figure 14 because Panda word count

shuffles many small intermediate key/value pairs after Map

stage, which incurs significant synchronization overhead

among GPU and CPU. Therefore the Panda word count job

prefers to assign more workload to run on the CPU device

in order to decrease the synchronization overhead.

Figure 15: Performance of Word Count Job Using Panda-

1GPU, Panda-24CPU, Panda-1GPU+24CPU, Mars-1GPU,

Phoenix-24CPU on Delta Machine.

Figure 15 shows the performance of word count jobs

using Panda-1GPU, Panda-24CPU, Panda-1GPU+24CPU,

Mars-1GPU, Phoenix-24CPU on the Delta machine. The

results indicate that Panda has 2.28x speedup over Mars, as

Mars needs an extra run to calculate the buffer indices,

which double the job running time. Another reason is that

Panda supports the local combining on GPU and CPU

device, which contributes around 40% performance

improvement for the test input data set. We also noticed that

Phoenix outperform Panda with a speedup of 4.63x due to

the better CPU memory management. Another reason is that

our cpu_map() function are compiled using nvcc, and while

Phoenix using g++. A benchmark test of sequential word

count program shown that the g++ generated binary code is

around 2 times faster nvcc generated binary code. In the C-

means, and matrix multiplicaion applications, the cpu_map()

functions were compiled with g++ with O3 enabled. This

result proved our argument that map functions should be

implemented and optimzed for different devices sperattely.

I. SUMMARY AND CONCLUSION

The heterogeneous accelerator devices are becoming

ubiquitous. However, programmability and performance

challenges exist when developers want to make good

utilization of these heterogeneous devices. In order to meet

the challenges, we are proposing heterogeneous MapReduce

model and a two-level scheduling strategy. A general

purpose runtime with MapReduce interface for running

SPMD computation on GPUs and CPUs is given.

Experimental results of C-means clustering, matrix

multiplication, and word count, indicate that using all CPU

cores increase the GPU performance by 11.5%, 5.1%, and

41.9% respectively. For some application scenarios, using

Panda to run SPMD job can increase device utilization, and

decrease job running time.

We also found that for some application scenarios, Panda

gpu_device_mapreduce functions may not performance as

well as other runtime technologies. For example, Phoenix

give better performance for word count, CUDA, and

MAGMA are faster for Matrix Multiplication. The point is

that if there are many threading code exist in SPMD

application, it should be processed by tools such as Pthreads

and OpenMP on CPUs, if there are many vector code exist

in SPMD application, it should be processed by tools such

as cuBLAS and MAGMA. Simply using threading code to

process matrix algebra applications , such as Matrix

Multiplication and C-means will not give good performance

as it does not leveraged the vector processing instruction set.

Therefore, we found that using Panda gpu_host_mapreduce

functions can give 90% performance as compared with

CUDA Cmeans and MAGMA applications. However,

utilizing these vector processing programming model such

as CUDA and Intel vector processing language will also

increase the programmability for developers. Panda leave

the flexibility to developers to choose whether implement

the vector optimization code in the Map and Reduce

function themselves. We made the design goal on trade-off

between programmability and performance, which is in

between OpenACC and CUDA.

The lessons we learned in Panda work include that the

source code optimized for one device architecture properly

won‟t perform well in others. Sometimes, it is necessary for

developers to implement different codes or algorithm for

different device architectures in order to get better

performance. Second, adaptively scheduling tasks with

heterogeneous granularities on GPU and CPU is another

issue affects overall job performance. For applications that

have regular pattern of memory access, computation, and

synchronization; the heuristic workload distribution model

studied in paper[26] is the feasible solution. However, our

proposed auto tuning approach showed the applicability to

wider class of applications and devices at the cost of

running some small tests jobs.

The future work of Panda could be:

1. Extend the framework to multiple nodes.

2. Extend the framework to other backend or

accelerators, such as OpenCL, MIC.

3. Run MPMD computation on heterogeneous devices.

Acknowledgements

 The authors thank Andrew Pangborn for the original C-

means CUDA code and anonymous reviewers for theirs

insightful suggestions. This work was partially supported by

the CReSIS project funded by NASA.

REFERENCES

[1] Michael Garland, David Kirk, Understanding throughput-oriented architectures, Communications of the ACM 2010

[2] NVIDA, CUDA SDK, http://www.nvidia.com/ojbect/cuda.get.html

[3] MUNSHI, A. OpenCL Parallel Computing on the GPU and CPU, In ACM SIGGRAPH (2008)

[4] Dean, J. and S. Ghemawat (2004). "MapReduce: Simplified Data Processing on Large Clusters." Sixth Symposium on Operating Systems Design and
Implementation: 137-150.

[5] An Overview of the GridWay Metascheduler, 2009

[6] Bingshen He, Wenbin Fang, Qiong Luo, Mars: A MapReduce Framework on Graphics Processors

[7] Justin Talbot, Richar Yoo, Phoenix++: Modular MapReduce for Shared-Memory Systems.

[8] OpenACC www.openacc-standard.org

[9] Chi-Keung Luk, Sunpyo Hong, Qilin: Exploting Parallelism on Heterogenous Mulitprocessors with Adaptive Mapping

[10] Manuel Chakravarty, Gabriele Keller, Sean Lee, Accelerating Haskell Array Codes with Multicore GPUs. DAMP 2011

[11] Ioan Raicu, Yong Zhao, "Falkon: a Fast and Light-weight tasK executiON framework for Grid Environments", IEEE/ACM SuperComputing 2007,
November 15th, 2007.

[12] T.R.Vignesh, M. Wenjing “Compiler and runtime support for enabling generalized reduction computation on heterogenesou paralle configuration”
ICS‟10; Proceedings of the 24ACM International Conference on Supercomputing.

[13] Alan Humphrey, Qingyu Meng, Martin Berzins, Todd Harman, Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System,2012

[14] Divide and Conquer on Hybrid GPU-Accelerated Multicore Systems, Christof Vömel, Stanimire Tomov, and Jack Dongarra, SIAM J. Sci. Comput.
Volume 34, pp. C70-C82, 2012.

[15] Multithreading in the PLASMA Library, Jakub Kurzak, Piotr Luszczek, Asim YarKhan, Mathieu Faverge, Julien Langou, Henricus Bouwmeester, and
Jack Dongarra in Mult and Many‐Core Processing: Architecture, Programming, Algorithms, & Applications, Edited by Mohamed Ahmed, Reda A.
Ammar, Sanguthevar Rajasekaran Series: Chapman & Hall/CRC Computer & Information Science Series, published by Taylor & Francis, 2013.

[16] Kamesh Madduri, Khaled Ibrahim, Gyrokinetic Toroidal Simulations on Leading Multi-and Manycore HPC System. SC11

[17] Eric HOLK, William BYRD “Declarative Parallel Programming for GPUs” , PADL, 2011.

[18] Li, H., Y. Huashan, et al. (2008). A lightweight execution framework for massive independent tasks. Many-Task Computing on Grids and
Supercomputers, 2008. MTAGS 2008. Austin, Texas.

[19] Automatically Tuned Linear Algebra Software (ATLAS) http://math-atlas.sourceforge.net/

[20] David R. Hanson, Fast allocation and deallocation of memory based on object lifetimes, SOFTWARE 2006.

[21] J.Ekanayake, H.Li, et al. (2010). Twister: A Runtime for iterative MapReduce. Proceedings of the First International Workshop on MapReduce and its
Applications of ACM HPDC 2010 conference June 20-25, 2010. Chicago, Illinois, ACM.

[22] Keeneland http://keeneland.gatech.edu/overview

[23] FutureGrid https://portal.futuregrid.org/

[24] Andrew Pangborn, Gregor von Laszewski Scalable Data Clustering using GPUs Paper Draft. 2009.

[25] Andrew Pangborn, Scalable Data Clustering with GPUs, Thesis, Computer Engineering, Rochester Institue of Technology, 2010.

[26] Satoshi Ohshima, Kenji Kise, Parallel Processing of Matrix Multiplication in a CPU and GPU Heterogeneous Environment

[27] G. Fox, A. Hey, and Otto, S (1987). Matrix Algorithms on the Hypercube I: Matrix Multiplication, Parallel Computing, 4:17-31

[28] Hui Li, Geoffrey Fox, Judy Qiu, Performance Model for Parallel Matrix Multiplication with Dryad: Dataflow Graph Runtime, BigDataMR, 2012

[29] Zhanquan, S., and G. Fox, Study on Parallel SVM Based on MapReduce, Proceedings of the 2012 International Conference on Parallel and Distributed
Processing Techniques and Applications

[30] Thilina Gunarathne, Bimalee Salpitikorala, Arun Chauhan and Geoffrey Fox. Optimizing OpenCL Kernels for Iterative Statistical Algorithms on
GPUs. In Proceedings of the Second International Workshop on GPUs and Scientific Applications (GPUScA), Galveston Island, TX. 2011.

[31] Jong Youl Choi, Judy Qiu, Marlon Pierce,Geoffrey Fox, Generative topographic mapping by deterministic annealing, International Conference on
Computational Science, ICCS 2010

[32] FLAME DataSet: http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/published_data.

[33] Judy Qiu and Seung-Hee Bae, “Performance of Windows Multicore Systems on Threading and. MPI,” Concurrency and Computation: Practice and
Experience

http://www.nvidia.com/ojbect/cuda.get.html
http://www.openacc-standard.org/
http://math-atlas.sourceforge.net/
http://keeneland.gatech.edu/overview
https://portal.futuregrid.org/
http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/published_data

[34] Yang Ruan, Saliya Ekanayake, Mina Rho, Haixu Tang, Seung-Hee Bae, Judy Qiu, Geoffrey Fox DACIDR: Deterministic Annealed Clustering with
Interpolative Dimension Reduction using a Large Collection of 16S rRNA Sequences ACM Conference on Bioinformatics, Computational Biology
and Biomedicine (ACM BCB) Orlando Florida October 7-10 2012

[35] http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/published_data.

http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/published_data

